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Performance of two coding systems is analyzed in this study for a noisy optical chan-
nel with Mf{= 2L )-ary orthogonal signaling and random-gain photomultiplier detection.
The considered coding systems are the Reed-Solomon (RS) coding with error-only correc-
tion decoding and the interleaved binary convolutional system with soft decision Viterbi
decoding. The required average number of received signal photons per-information bit,
N » Jor a desired bit error rate of 1 0-6 is found for a set of commonly used parameters
and with a high background noise level, We find that the interleaved binary convolutional
coding system is preferable to the RS coding system in performance-complexity

tradeoffs.

l. Introduction

The utilization of optical frequencies for deep-space com-
munications has been considered as an attractive alternative to
microwave frequencies, because of the advantages of smaller
apparatus sizes and wider bandwidths. M(= 2L)-ary orthogonal
signaling is the most popular modulation scheme for energy-
efficient optical communications when a large bandwidth-bit
time product is available. Such a signaling is implemented by
multiple-pulse-position modulation and/or multiple-color (fre-
quency) modulation (Refs. 1 and 2). Additionally, direct
detection employing a photomultiplier is often used for
reception.

For further energy efficiency, coding over such a channel
has been studied. When no background noise and ideal detec-
tion are assumed, the above channel can be modeled as an

M-ary input, (M + 1)-ary output erasure-only channel (MEC).
For this simplest channel, Reed-Solomon (RS) coding with
erasure-only correction decoding was studied in Ref. 3. In
Ref. 4, it was recognized that there is an equivalence between
the MEC and the L-parallel correlated binary input, ternary
output, erasure-only channels (BECs). Also in Ref. 4, the use
of L-parallel, independent binary convolutional coding systems
with Viterbi decoding were suggested; these systems exhibited
performance favorable to those with similar complexity
described in Ref. 3. For the channel with random-gain photo-
multiplier tube (PMT) reception, an RS coding system with
combined error-and-erasure correction decoding was studied
in Ref. 5, but with a negligibly low background noise level.

In this article, we consider the M-ary orthogonal input opti-
cal channel with random-gain PMT detection and with arbi-
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trary background noise levels, as described in the next section.
The performance of two coding systems over this channel is
then studied. In Section III, the performance analysis of an
RS coding system with error-only correction decoding is given.
Then by extending the channel decomposition idea of Ref. 4,
we propose a method of using interleaved, short-constraint-
length binary convolutional codes with soft decision Viterbi
decoding for this noisy optical channel, and analyze its per-
formance. A numerical example with a high background noise
level is given. We conclude that, as in the case of the noiseless
ideal optical channel, the interleaved binary convolutional
coding system is preferable to the RS coding system for
the noisy optical channel with nonideal photon counting,
which results from realistic PMTs.

Il. Noisy M-ary Orthogonal Input Optical
Channel With a Random-Gain
PMT Receiver

Let an optical transmitter emit an optical pulse in one pulse
position among M, nonoverlapping pulse positions with one
color among M, nonoverlapping colors at each symbol time

T,. Suppose the receiver can separate the pulse positions and -

the colors. Then we have an M(= M, X M,)-ary input optical
channel. Let X be the channel input symbol random variable,
which takes its value from the M-ary channel input symbol
alphabet . ={0, -+, m, -+, M - 1}. For each T, the
receiver is to produce an M-dimensional observation vector y =
Wos " > Yms ' » Vg1 ) Where each y,, is the output at the
. detector consisting of a PMT and an integrate-and-dump filter
for the assigned color-time slot. A model for the detector is
shown in Fig. 1, where T, (= T,/M,) is the slot time and R is
the PMT anode load resistance. Note that we need such a PMT
detector for each M, color slot and the color splitter. We
assume symmetries and independences for every time and
color slot so that the resulting channel becomes an M-ary
orthogonal input, symmetric output, memoryless channel. We
restrict our attention to M = 2L cases with integer L.

A PMT is characterized by its average gain 4 and the num-
ber of dynodes v. The variance of the PMT gain is 248 where
2B =(4 - 1)/(AY/¥ - 1). In Ref. 6, a Markov diffusion approxi-
mation to the statistics of PMT gain was given. Including the
effect of thermal noise, the statistics of the detector cutput
voltage random variable Y, conditioned on the number of
input photons a, is given by (Ref. 6)

H(yla) = Pr {Y<yla}

- C- Ol + f Q3 - e2)fs) » Wzla) - d
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C =exp [-2{1 - exp (-4/B)}], s? is the variance of thermal
noise (= N,/T,, N, i§ the one-sided thermal noise spectral
density), and ¢ = eR/T, (e is the electron charge).

__ Let ]Vn be the average number of noise photons per slot and
N, be the average number of received signal photons per M-ary
symbol. Recall that there is only one active slot among M pos-
sible slots. Let G(¥) be the cumulative distribution function
for the active slot and F(y) be that for a nonactive slot. Then
we have

G(y) = Hpla = N +N )and F(y) = H(yla = N,)

and the channel transition probabilities for each m € % can
be represented as

PY<ylX =m}=G0,) [] 7o,

m'Em

Ill. Reed-Solomon Coding System With
Error-Only Correction Decoding

For an M-ary orthogonal input, symmetric output channel,
one of the best coding systems is the (V, K) RS coding system
whose symbol alphabet size is M, where K and NV are the num-
bers of information and channel symbols in an RS codeword
(Ref. 7). The code rate r is K/N [information symbols/channel
symbol], and N is usually chosen to be M - 1 or M. When the
decoder is capable of correcting errors only, a hard decision
(i.e., M-ary symbol decision) must be performed in front of
the decoder. By assuming equiprobable channel input symbols,
it is easy to show that the maximum likelihood (ML) symbol
decision rule is optimum due to the symmetries of the chan-
nel. Since dG(¥)/dF(») is a monotonically increasing function
of y for this optical channel, the decision rule simplifies to,
“declare m as the transmitted symbol, if the m-th observation
value y,, is the largest.” The corresponding decision error
probability, p, is given by




The resulting RS decoded bit-error rate (BER) is given by
(Ref. 7)

LY N {ar\ H
= Fi/d R 1Y . i' - N..i.L
BER = 201D i;ﬁ:l \;) 7 a-0""g

where ¢ (= integer part of (V - K)/2) is the number of correct-
able error symbols in an RS codeword.

IV. Binary Convolutional Coding System
With Soft Decision Viterbi Decoding

For binary-input symmetric-output channels, a short-
constraint-length binary convolutional coding system with soft
decision Viterbi decoding is one of the most practical and
powerful coding systems available. Let U € {0, 1}be the
binary channel input symbol and u(y, U) is the metric to be
used by the decoder for the channel input symbol U with a
given channel output observation vector y. Let D be the
Chernhoff bound on the probability that the metric. for a
transmitted symbol is smaller than that for a nontransmitted
symbol, Then we have (Ref. 8)

D
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D(w) = Elexp {w+ [p(Y, U = D-u(Y, U =0} U = 0]
where the operator E is the expectation over the observation
random vector Y. Notice that D becomes the Bhattacharyya
bound when the metric is an ML metric. For a given binary
convolutional encoder having a transfer function T'(Z, I), the
decoded BER at the output of the associated Viterbi decoder
using the metric ¢ is well bounded by (Ref. 8)

BER<1/2+ 2T, I)
oI z=D, I=1

Recall that M = 2% and each one of the M-ary symbols is
assumed to have a one-to-one correspondence with a set of
L bits. An example of such a mapping is shown in Table 1 for
the M = 8 (L = 3) case. Suppose we have an MEC with erasure
probability of g. That is, the transmitted symbol is either cor-
rectly received with probability 1 - g or is erased with prob-
ability q. Hence, once the receiver has an unerased symbol, all
the corresponding L bits are recovered correctly. Alternately,
when the receiver has an erased symbol, all the L bits are also
erased. Accordingly, the MEC is equivalent to L-parallel binary

erasure-only channels (BEC), each with the same erasure prob-
ability g. Such component channels are fully correlated, since
the erasure events always occur simultaneously for all of
L-component channels. Massey, in Ref. 4, noticed this equiva-
lence and suggested use of the binary convolutional coding
system with Viterbi decoding for each component binary
input channel independently (i.e., by ignoring the correlation),
Note that, instead of using L-parallel binary coding systems,
one may use one binary coding system with interleaving
(Ref. 4). Also, the binary convolutional coding system was
shown to be preferable to RS coding system in performance-
complexity tradeoffs, for the ideal optical channel with no
background noise. ' :

Now we shall extend the Massey’s channel decomposition
idea for the M-ary optical channel to the case of nonideal
detection and with background noise as described in Sec- °
tion IL. Let %, (#g) represent the set of all M-ary channel
input symbols having a 0 (1) in the 2-th component of their
binary representations (respectively). For the example shown
in Table 1, &, = {0, 1,4, 5} and F5=1{1,3,5,7} Let iy
and j, be the largest value among the channel output observa-
tion values in the set %, and j o For the example set of
observation values in Table 1, i, = max(3.11, 2.72, 6.67,
4,06) = 6.67 and j; = 4.06. We may use this iy and j directly
for the metric for the fth component channel input binary
symbol Uy, i.e., i (y, U, =0)=i; and u(y, Uy = 1) =j,. This is
not an ML metric for such a binary input coding channel, but
is a good choice based on the complexity consideration. It is
easy to show that the corresponding Chernhoff bounds are.
given, foreach =1,2, -+ ,L,by

D, =D = minD(w)
w0
D(w) = [(M/2)- f wexp (wy) « FM/2-1 (y)-dF(y)jl

U o) |(E-1) 66y P 0)

— 00

< dF(y) + FM/2=1 () + dG(y) f]

where we have used the following:

Pr {I,<y|U, = 0} = Pr (J,<y | U, = 1)
= G(y) - FM271 ()
Pr (£, <y|U, = 1} = Pt {J,<y |U, = 0} = FM2 )
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where I, and J,, are the random variables corresponding to 7,
and j,, respectively.

V. Numerical Example, Discussion,
and Conclusions

The coding systems described and analyzed in the previous
sections are compared for the specific example of an optical
channel with random-gain PMT reception and a very high
background noise level of 108 noise photons per second. Such
a background level is expected when a spacecraft is in front of
a bright planet. All the other parameters are chosen to be the
same as those in Refs. 5 and 6: the slot time T, = 1077 s,
average PMT gain A = 106, the number of PMT dynodes

= 11, the PMT anode load resistance R = 50 &, and the
one-sided thermal noise power spectral density N = 1.156 X
10-17 V/Hz.

With these parameters and the equations in the previous
sections, we find the required average number of received sig-
nal photons per symbol, N ;» for a desired BER of 10~6 and for
some values of channel symbol alphabet size M and code rate
r. For the RS coding system, 5 < L < 8 and all possible code
rates # = K/N were considered with V =M., For the interleaved

binary coding system, we consider 4 < L < 10 and r = 1/3,

1/2, 2/3, 3/4, and 4/5. For the latter system, there is another
choice of code parameter, which is the number of states, S, in
the Viterbi decoding. For a regular rate 1/n convolutional code
with constraint length &, S is given by 2%~1, For this numerical
example, we restricted S to be 64 (or equivalently, k = 7), and
used the (7, 1/2) and (7, 1/3) codes (found in Ref. 9) and the
r = 2/3, 3/4, and 4/5 punctured codes derived from the (7,
1/2) codes (found in Ref. 10). For such punctured codes, a
decoder for the (7, 1/2) code can be used directly with minor
modifications on metric forming (Ref. 10).

The quantity of interest for energy-efficient optical com-
munication is the average number of received photons per
information bit, Nb, rather thanN Note thatN = 1/p where
p is the commonly used parameter (Ref. 5) for r photon effi-
ciency in ‘[bits/photon] . N p is related to N by Nb =N (rL).
The curves of required values of N p for BER < 10-6 versus
code rate » are plotted in Fig, 2. The solid lines correspond
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to the RS coding system performances while the broken lines
refer to the interleaved binary convolutional coding system
performances.

From Fig. 2 we see that RS coding systems perform better
for larger values of L (>6), while the interleaved binary 64-
state convolutional coding systems perform better for smaller
values of L (<6). However, notice that the RS coding system
complexity grows exponentially as L increases, while the com-
plexity of the binary coding system remains almost the same
for any value of L. Hence, for a fair comparison between the
two coding systems, one must consider the system complexity
as well as the performance. For a given channel input alpha-
bet size M = 64 (L = 6), the two coding systems show almost
identical performance, but the interleaved 64-state binary
Viterbi decoding system is considered to be less complex than
the 6-bit RS decoding system.

For better performance with the interleaved binary coding
system, one may increase the system complexity by employ-
ing longer constraint-length codes. The interleaved binary 256-
state (k = 9) Viterbi decoded convolutional coding system
performs almost the same as the 7-bit RS coding system for
the noisy 128-ary optical channel and requires less complexity.
From these performance-complexity considerations, we con-
clude that the interleaved binary convolutional coding system
is preferable to the RS coding system for the noisy nonideal
channel, similar to the results for the noiseless ideal optical
channel considered in Ref. 4.

One may consider some variations of the two coding sys-
tems. For the RS coding system, instead of error-only correc-
tion decoding, one can consider a combined error-and-erasure
correction decoding. This modification can improve perfor-
mance, but the amount of improvement is usually very small
except for the cases of very low background noise level, even
with properly designed (M + 1)-ary decision rules (see Ref. 7).
The metric given in Section IV is the simplest unquantized
metric for the component channel. Hence, one may consider
better metrics that more closely approximate ML decoding
metric. Furthermore, one can consider concatenated coding
systems employing the interleaved convolutional coding as an
inner coding. Hence, there is more flexibility and more room
for performance improvement with the interleaved convolu-
tional coding system.
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Table 1. An example of M-ary symbol to L binary symbols mapping

and an example set of observation values

m Uty iy Pn
0 000 3.11
1 001 2.72
2 010 1.53
3 011 1.18
4 100 6.67
5 101 4.06
6 110 1.74
7 111 0.98
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Fig. 1. A model for an optical receiver employing a random-gain photomultiplier tube
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Fig. 2. Performances of cading systems for M(== 2L)-ary orthogonal input nolisy optical channel
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